On Ciphers that Continuously Access the Non-Volatile Key

نویسندگان

  • Vasily Mikhalev
  • Frederik Armknecht
  • Christian Müller
چکیده

Due to the increased use of devices with restricted resources such as limited area size, power or energy, the community has developed various techniques for designing lightweight ciphers. One approach that is increasingly discussed is to use the cipher key that is stored on the device in non-volatile memory not only for the initialization of the registers but during the encryption/decryption process as well. Recent examples are the ciphers Midori (Asiacrypt’15) and Sprout (FSE’15). This may on the one hand help to save resources, but also may allow for a stronger key involvement and hence higher security. However, only little is publicly known so far if and to what extent this approach is indeed practical. Thus, cryptographers without strong engineering background face the problem that they cannot evaluate whether certain designs are reasonable (from a practical point of view) which hinders the development of new designs. In this work, we investigate this design principle from a practical point of view. After a discussion on reasonable approaches for storing a key in non-volatile memory, motivated by several commercial products we focus on the case that the key is stored in EEPROM. Here, we highlight existing constraints and derive that some designs, based on the impact on their throughput, are better suited for the approach of continuously reading the key from all types of non-volatile memory. Based on these findings, we improve the design of Sprout for proposing a new lightweight stream cipher that (i) has a significantly smaller area size than almost all other stream ciphers and (ii) can be efficiently realized using common non-volatile memory techniques. Hence, we see our work as an important step towards putting such designs on a more solid ground and to initiate further discussions on realistic designs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stream ciphers and the eSTREAM project

Stream ciphers are an important class of symmetric cryptographic algorithms. The eSTREAM project contributed significantly to the recent increase of activity in this field. In this paper, we present a survey of the eSTREAM project. We also review recent time/memory/data and time/memory/key trade-offs relevant for the generic attacks on stream ciphers.

متن کامل

A Note on Stream Ciphers that Continuously Use the IV

Time-memory-data tradeoff (TMD-TO) attacks limit the security level of many classical stream ciphers (like E0, A5/1, Trivium, Grain) to n/2, where n denotes the inner state length of the underlying keystream generator. This implies that to withstand TMD tradeoff attacks, the state size should be at least double the key size. In 2015, Armknecht and Mikhalev introduced a new line of research, whi...

متن کامل

Economic Order Quantity for Deteriorating Items with Non Decreasing Demand and Shortages Under Inflation and Time Discounting

Some products like green vegetables, volatile liquids and others deteriorate continuously due to evaporation, spoilage etc. In this study, an inventory model is developed for deteriorating items with linearly time dependent demand rate under inflation and time discounting over a finite planning horizon. Shortages are allowed and linearly time dependent. Mathematical model is presented for the p...

متن کامل

A new method for accelerating impossible differential cryptanalysis and its application on LBlock

Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...

متن کامل

Time-Memory-Data Tradeoff Attacks against Small-State Stream Ciphers

Time-memory-data (TMD) tradeoff attacks limit the security level of many classical stream ciphers (like E0, A5/1, Trivium, Grain) to 2 n, where n denotes the inner state length of the underlying keystream generator. This implies that to withstand TMD tradeoff attacks, the state size should be at least double the key size. In 2015, Armknecht and Mikhalev introduced a new line of research, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Trans. Symmetric Cryptol.

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016